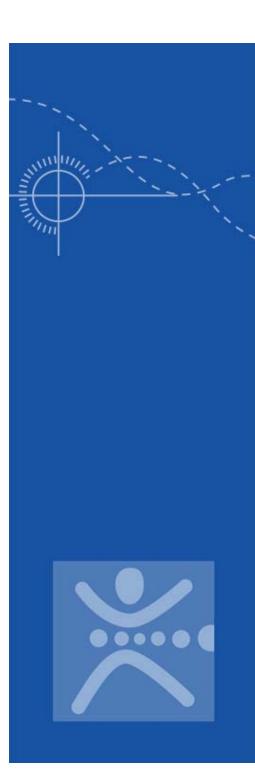


NEW APPROACHES for FOOD AUTHENTICITY TESTING


JOHN SZPYLKA, Ph.D.

MÉRIEUX NUTRISCIENCES

National Environmental Monitoring Conference

8 August 2019

Let's Chat About...

• **Definitions**

o AOACI Response

o Targeted Testing

o Non-Targeted Testing

o SMPRs and Priorities

o Some New Methods

Areas of Focus ... Despite the Lack of "Internationally Agreed-upon Definition"

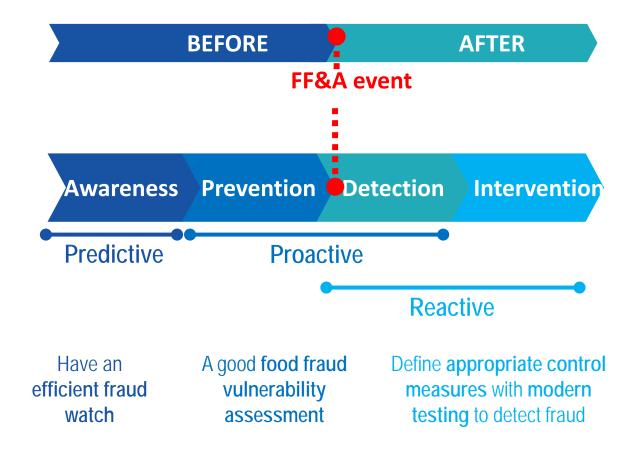
Food Fraud Incidents :

- Deliberate act
- Aims for economic gain in an illicit manner
- Meant to be hidden / not to be discovered
- Misrepresents the food product to consumers

US FDA Working definition of "Economically Motivated Adulteration" (EMA)

The fraudulent, intentional substitution or addition of a substance in a product for the purpose of increasing the apparent value of the product, or reducing the cost of its production, i.e. for economic gain.

Clarifications



- Food authentication*
 - a process to evaluate that state of being
- Food fraud*
 - the act that creates the problem;
 - the deliberate and intentional substitution, addition, tampering, or misrepresentation of food, food ingredients, or food packaging; or false or misleading statements made about a product, for economic gain.

Food Fraud Risk Management

A global approach

AOAC Int'l Initiative

AOAC INT'L Taskforce on Food Fraud:

- Shape AOAC's role and future actions to address the Food Fraud
- Leverage AOAC's leadership and stakeholder engagement to support sustained action in addressing <u>analytical</u> <u>requirements</u> for a Food Fraud Prevention
- Framework
 - Method Availability
 - O Method Standardization

AOACI's Actions

AOACI BOARD OF DIRECTORS created 2 working groups:

> Targeted Testing Working Group: Map existing methods, their status, and ID needs for method development and standardization

Chaired by Dr. Joe Boison

 Non-Targeted-Testing Working Group : To develop Standard Methods Performance Requirements (SMPRs) for methods used in the early detection of food fraud incidents

✓ Chaired by Dr. John Szpylka

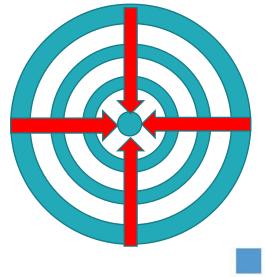
Approach for Authenticity Testing

Standard: Targeted Analysis

- Is it in the food sample?
- Determination of known molecules associated with adulteration

Innovative: Non-Targeted Screening (NTS)

- Is Something in the food sample?
- Determination of the overall profile / fingerprinting of the sample = known + unknown molecules
- Much data collected at the same time to build an *ad hoc* reference database for authenticity testing. Innovative approach for customized projects:
 - Geographic origin
 - Species varieties
 - Biodiversity
 - Etc.



Targeted Testing (TT)

Targeted Testing (TT) requires

- prior identification of adulterants likely to be present
- subject to EMA
- employed to assure adulterants do not contain known health-risks and maintain ingredient integrity
- Targeted Testing (TT) protocols/procedures to:
 - Support authenticity assurance
 - Ensure the food supply chain integrity
 - Tells adulterers we are monitoring and will prosecut

Targeted Testing Working Group

Current Actions:

- Assessment of gaps of current food fraud test method and identify & validate new targeted testing methods;
- Developing standards leading to Codex Type 1 methods;
- Prioritizing actions of adulterants and commodities of interest.

Capabilities: Targeted approach

- Some food frauds can be detected with standard tests
 when they are properly combined together
 when you know what you are looking for
- Examples
 - Fish, meat and botanical species identification
 - Counterfeiting of organic products
 - Common wheat in durum wheat pasta
 - Artificially colored fruit juice
 - Adulteration of olive oil with cheaper substitutes
 - Adulteration of milk
 - Adulteration of A2 milk
 - Adulteration of Butter
 - Adulteration of spices
 - Crust % in grated parmesan
 - Aging of Grana Padano cheese
 - Arabica vs Robusta coffee
 - Dairy products produced by silage fed animals vs. grass fed
 - Fish freshness
 - Etc.

Non-Targeted Testing Methods

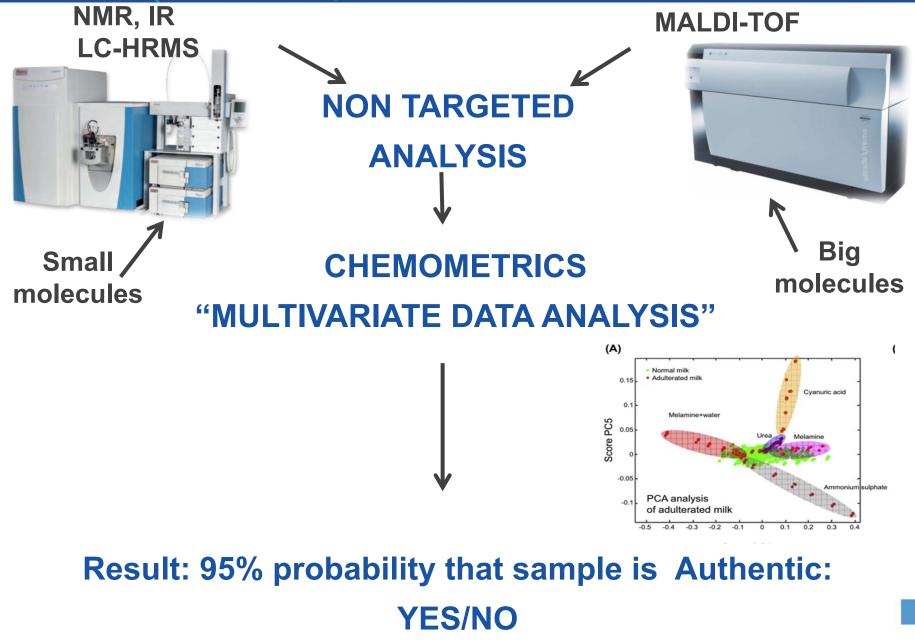
New Concept

- In The Past: Quantitative analytical methods measure amounts of known chemicals in known foods.
- In The Past: Qualitative methods determine if a known chemical or microorganism is present at or above a known level.
- New: Non-Target Testing models properties of the authentic material, not the properties of the adulterant.

NTT Approach

- Create a standardized fingerprint for an ingredient.
- Compare new lots of the ingredient to the fingerprint.
- Quantify "degree of difference"
 - Small difference shows something <u>may be</u> wrong
 - Large difference shows something <u>is</u> wrong

Non-Targeted Technologies



- Variety of methodologies are being used
 - LC-MS/MS
 - GC/MS
 - NMR
 - Spectroscopic
 - XRF and other ones for certain matrices
- Data analysis
 - Chemometrics
 - Principle Component Analysis
 - Customized software
- Specific method requirements don't exist
 - Some methods can give insight into adulterating substance

- Rapid Evaporative Ionization MS
- Laser Diode Thermal Desorption
- Isotope Ratio MS
- NGS-metabarcoding
 - Lots of activity
 - ILSI Food Authenticity Task Force
 - AOAC Task Force (MXNS chairing NTS portion)
 - USP webinars

Capabilities: NTS-Non Targeted Screening Approach

Standard Method Performance Requirements (SMPRs®)

Appendix F: Guidelines for Standard Method Performance Requirements

SMPR

- First define the method's minimum performance requirements
- Is a part of a *Call For Methods*
- Is used by an AOAC Expert Review Panel to judge if a submitted method can be accepted as an AOACI First Action Official Method of Analysis

New SMPR Components

Traditional AOAC SMPR	Non-Targeted Testing SMPR (draft)

NTT Working Group

Created Generic SMPR

- Demonstration of Non-Targeted Testing method effectiveness and usefulness
- Validation/verification guidance
- Generic SMPR is being used first on prioritized commodities
 - Learnings will then be applied to other commodities
- SMPRs will sent with Call for Methods

Using Parts of USP Appendix XVIII

- NTT models the properties authentic material, not the properties of the adulterant
- Define what we want NTT method to do
- Define the Reference Set of authentic samples to create fingerprint
 - Incorporate natural variability
- Define Test Samples to evaluate method
 - Authentic and adulterated samples
- Method developers choose technology and mathematical assessment

Example Applicability Statements

Example 1: "A rapid non-targeted method for detecting the adulteration of milk powder with <u>nitrogen-rich compounds</u> added at <u>economically</u> <u>motivating levels</u> (e.g., 0.1%) with a sensitivity rate of 99% and a specificity rate of 95%, both with a Confidence Interval of 95%."

Example 2: "A rapid non-targeted method for detecting the adulteration of milk powder with <u>any</u> foreign material at economically motivating levels (e.g., 5%) with a sensitivity rate of 90% and a specificity rate of 95%, both with a significance level of p = 0.01."

Sensitivity: ability to correctly recognize unacceptable samples/material as atypical

Sensitivity = (correctly identified adulterated foods) (total adulterated foods)

Specificity: ability to correctly recognize samples/materials as typical

Specificity = (correct identified authentic foods) (total authentic foods)

NTT SMPR Two Tiered Approach

How do reference materials and standards fit into a method looking for unknowns?

- Tier 1
 - For initial Single Lab Validation (SLV)
 - Recipes of commonly used adulterants at EMA levels
 - Number of replicates and %correctly identified as adulterated
 - Define how "authentic" reference materials representing natural variability
- Tier 2
 - For Multi-Lab Validation (MLV)
 - Third party group creates blind authentic and adulterated samples
 - Adulterants go beyond those used in SLV

Generic SMPR Components

- A non-targeted method
 - to evaluate foods and ingredients for possible EMAs.
 - Generate a fingerprint of the authentic material.
 - Compare test samples fingerprints to assess differences.
 - Binary result of either authentic or potentially adulterated.
- Single Lab Validation using prescribed adulterated materials (next slide).
- Approved SLVs proceed to 2nd level using blinded samples containing unknown adulterants.
- Method developer documents hoe authentic samples were located.

Generic NTT SMPR

Authentic Material	Adulterant	%adulterant in Validation Samples	n	#positive	%Sensitivity at 95% confidence (Correctly Identified as Adulterated)
EVOO	Sunflower Oil	0%	30	n/a	fingerprint
		15%	100 (or 35)	99 (or 35)	95%
EVOO	Safflower Oil	15%	100 (or 35)	99 (or 35)	95%
Honey	HFCS	0%	30	n/a	fingerprint
		25%			
Milk (powder)					
Milk (liquid)					

Commodities Being Examined First

Initial Commodity List

- Olive oil
- Extra Virgin Olive Oil
- Honey
- Milk Liquid & Powder
- Fish
- Meat
- Seafood
- Grains (rice)
- Spices

Some Additional Thoughts

- Non-Targeted and Targeted Testing Overlap
 - NTT will identify new adulterants, therefore new TT methods will be needed.
- If a major international food fraud incident happens, a rapid response will be needed.
 - AOAC will have an even bigger role.

Targeted and non-targeted approach

TARGETED APPROACH

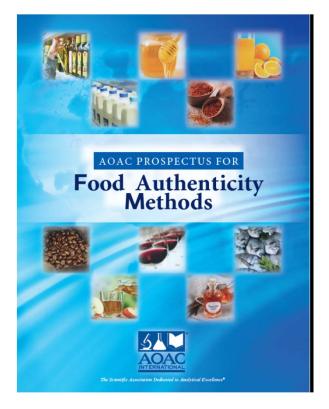
- Fish, meat and botanical species identification
- Common wheat in durum wheat pasta
- Artificial colors in juice
- Adulteration of olive oil with cheaper substitutes
- Crust % in grated parmesan
- Arabica vs Robusta coffee

NTS APPROACH

- EVOO geographical origin
- Species varieties and biodiversity
- Origin of tomato products

TARGETED + NTS APPROACH

- DOP Parmigiano Reggiano
- 100% italian origin (wheat)


— ...

...

AOAC Food Authenticity Working Group

- For information on how to join any of the AOAC Food Authenticity Working Groups below, please contact Delia Boyd, Sr. Manager at <u>dboyd@aoac.org</u>.
 - Non-Targeted Testing Working Group
 - Targeted Tested Working Group

DNA Microsatellites, Isotope Ratios and Metabolomics to better understand botanical and geographic origin of wheat, semolina and pasta.

E. Gritti, E. Poloni, F. Cattapan, <u>E. De Dominicis</u>, S. Saner - Mérieux NutriSciences Research & Science Center

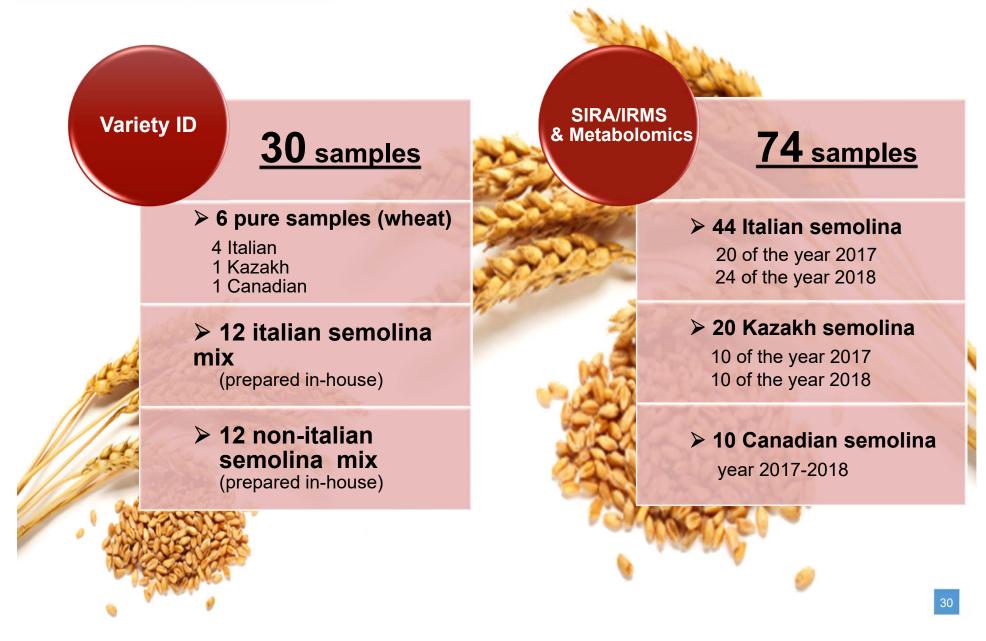
G. Gambarota - De Matteis Agroalimentare

Recent MXNS Study

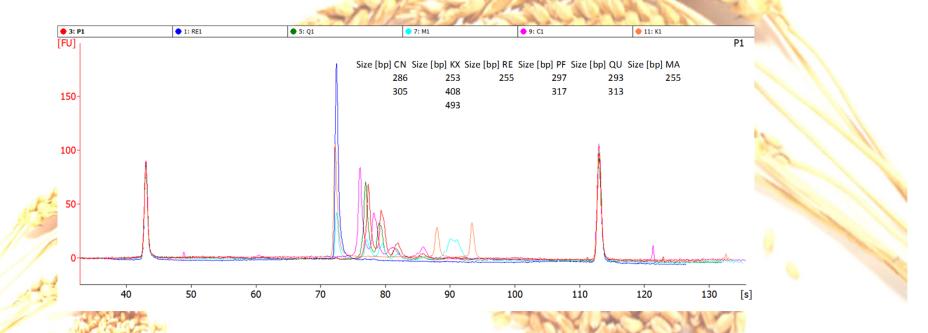
 DNA Microsatellite markers
 Simple Sequence Repeats (SSRs) different in length (Species - Variety - Individual)

2. IRMS: C, H, O, N, S

3. Metabolomics Non Targeted Mass Spectrometry



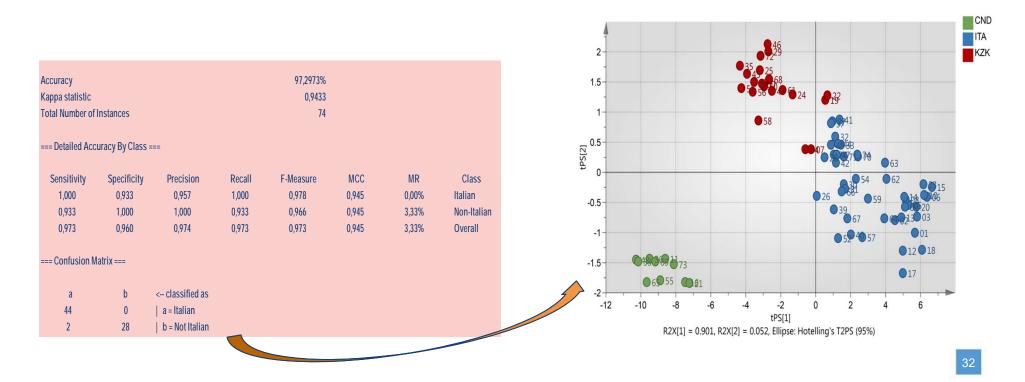
REFERENCE SAMPLES for METHOD DEVELOPMENT



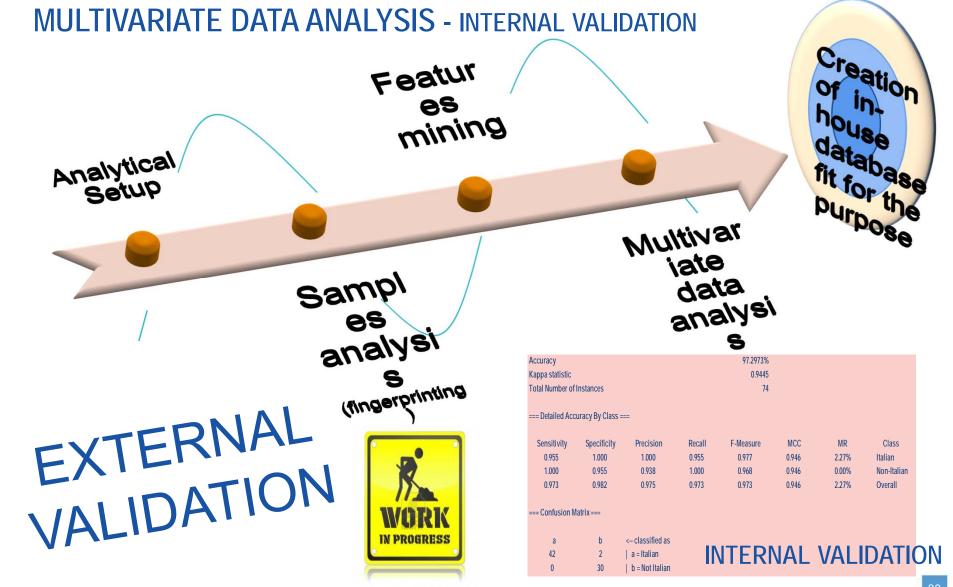
REFERENCE SAMPLES for METHOD DEVELOPMENT

This study provided a reproducible fingerprint: Based on Italian durum wheat cultivar SSR markers

- identified the minimum number of SSRs usable for the identification of the major number of Italian cultivars
- used ABI PRISM 3100 Genetic Analyzer and GeneMapper v 3.5 genotyping software for rapid and high throughput screening.


Electropherogram showing peak sizes using DuPW 167. Wheat cultivars are distinguished according to the polymorphic fragments of the SSR.

IRMS: C, H, O, N, S



MULTIVARIATE DATA ANALYSIS - INTERNAL VALIDATION

Soft Independent Modeling of Class Analogy (SIMCA) and Partial Least Squares Discriminant Analysis (PLS-DA) multivariate methods discriminate between samples from different geographical origins.

METABOLOMICS NON-TARGETED MS

Closing Thoughts

- Analytical testing is a component of combating food fraud
 as a part of an entire program
- Lots of analytical approaches are being developed
- Key factors
 - Our education is based only on events we have caught
 - Targeted Testing is for known adulterants or known authenticity factors
 - Non-Targeted Testing can be used as a screen
 - Methods being developed
 - How to Assess their reliability is being developed
 - TT and NTT should be used together

